Olbers’ Paradox

There is enough luminous matter in the universe to completely light up the night sky brighter than the surface of the Sun.

If you add up all the photons spewing out of all the stars and galaxies and the space in between, there is enough to light up the universe, yet when we look up at the night sky, this is clearly not the case. So, why is the sky dark at night?

Simply stated, the paradox formulated by the German astronomer Heinrich Wilhelm Olbers (1758–1840) says that if the universe is infinite and static, then at any given angle from the Earth the line of sight will end at the surface of a star. An infinitely old universe means that there has been plenty of time for the light from every star that has ever shined to reach our eyes. When we look up, there should be a star everywhere, in every piece of sky. Because of this, the sky at night should be just as bright as when the sun is up.

“We live in an age when unnecessary things are our only necessities.”
― Oscar Wilde

The explanation for why the sky is dark instead of a brilliant curtain of light comes from more recent observations and discoveries about our universe made since Olbers’ time. From what was known up to about the nineteenth century, it seemed seemed very reasonable that the universe was infinitely old and unchanging, and in such a universe, Olbers’ paradox is a real problem.

We now know however, that the universe is not infinitely old and static, the universe (in which we live now) had a beginning – given birth by the Big Bang (whatever preceded it, is still a bit of a mystery). This has important implications for Olbers Paradox. Because the universe has a finite age, one reason our night sky is dark is that many photons have not had time to reach us, those that have lie within our observable universe. This would not be so if the heavens had been around forever. The darkness of the night sky is a characteristic that argues against infinity.

But the Big Bang presents us with another paradox: it states that the early universe was awash in photons. Everywhere, hot photons permeated spacetime. At this time in our history, the cosmos was truly bright. Given these hot, bright early conditions, shouldn’t wherever we look in the sky reveal the remnant of the Big Bang? Shouldn’t there be a luminous curtain of light behind every star and galaxy we see?

“Whatever you do will be insignificant, but it is very important that you do it.” ― Mahatma Gandhi

The fact is, this curtain of light is there, but our eyes cannot see it. Due to the expansion of the universe, the wavelengths of these hot, early photons have been stretched over 1,100 times longer than their original wavelengths. The high-energy, luminous backdrop of the early universe, is today filled with relatively cool, microwave photons, invisible to the human eye after being stretched by the expanding fabric of our universe for over 13 billion years.